

Education Committee

<u>MSc (Laurea Magistrale)</u>

Molecular and Industrial Biotechnology

<u>Laurea Magistrale in</u> <u>Biotecnologie Molecolari e Industriali</u> Classe delle Lauree Magistrali LM-8

Biotecnologie Industriali Federico II BiotecnologieindustrialiFII

www.biotecnologieindustriali.unina.it/en/page/didattica-ed-orientamento/laurea-magistrale.html

The aim of the MSc in Molecular and Industrial Biotechnology

The MSc programme aims to educate graduated students for high profile positions in research centres, enterprises and industries operating in industrial biotechnology field. The programme:

- includes activities aimed at acquiring: (a) knowledge on the structure and function of biological systems, interpreted according to molecular and informational logics, from the cellular level to that of the organisms; (b) fundamental knowledge and techniques in various fields of industrial biotechnology, with particular attention to multidisciplinary approaches; (c) specialist skills in specific sectors of industrial biotechnology;
- provides the opportunity of external activities (e.g. internships in companies, public or private research institutes, traineeships in Italian and European universities) to strengthen skills in specific sectors of industrial biotechnology;
- includes as a qualifying moment of the training an experimental thesis carried out in academic research laboratories and/or in other public/private structures, including the results of an original scientific and technological research.

Potential fields of activity of MSc graduated students are biotechnological enterprises, chemical, pharmaceutical/cosmetic and nutraceutical industries, as well as the environmental technology sector. The MSc graduated students will be able to operate covering positions of high responsibility, including technical, economic and legal implications.

The programme includes two curricula:

"Birre - Biotechnology for Renewable Resources" "ProBio - Biotechnology productions"

The lessons of the Birre curriculum are in **English and Italian languages**: 6 courses - for a total of 57 CFU spread over a period of one year – are provided in English language and 4 courses - for a total of 30 CFU spread over a period of one year – are provided in Italian language. The topics of Birre curriculum are focused on molecular and industrial issues of biotechnology to prepare students to the construction of new products and services based on the exploitation of renewable resources. Students are provided with the interdisciplinary concepts of industrial biotechnology to convert renewable resources in consumables (e.g. energy vectors, bioplastics, pigments, nutraceuticals). Both classes of biotechnology products, i.e. high value products (e.g. antioxidants) and high massive products (e.g. energy vectors, bioplastics) are addressed.

The lessons of the ProBio curriculum are provided in **Italian language:** 9 courses, for a total of 87 CFU spread over a period of half a year. The topics of ProBio curriculum are focused on molecular and industrial aspects of biotechnology to educate students to a general integrated approach to consolidated and emerging technologies.

The structure of the MSc in Molecular and Industrial Biotechnology

Course	Module (if present)	ECTS
I Year – I s	emester	
Industrial microbiology and fermentation chemistry (IT)		6
Microaldal exploitation	Genetic engineering	6
	Microalgal resource	6
Industrial biotechnologies and environment	Industrial biotechnologies	6
protection (IT)	Environmental safety biotechnologies	6
l Year – II s	semester	
Transport phenomena for biotechnological applications		9
	Polyester based bioplastics	6
Biopolymers and bioplastics	Polysaccharide- and protein- based	
	bioplastics	6
Biorefinery processes		6
ll Year – I s	semester	
Hygiene background for biotechnologies (IT)		6
Design of conversion processor	Bioreactors	6
Design of conversion processes	Process simulation	6
Biosensors and Biochips (IT)		6
Environmental economy		6
ll Year – II s	semester	
Free selection proposed by the student		12
Practical training		18
Final project and exam		3

(IT) – course language: Italian

Education period (typical):

I Semester – From the end of September up to the beginning of Christmas holiday II Semester – From the beginning of March up to the beginning of June

Exams – January to March. June, July, September and October

Details of each course/module are reported at the webpage of the professor.

The list of records of course/modules is reported hereafter.

OVERVIEW OF THE COURSE: GENETIC ENGINEERING Module of: MICROALGAL EXPLOITATION

Study programme name Molecular and Industrial Biotechnology	Course	x	Master degree	A.A. 20)21/22
Teacher: Prof. Marco Salvemini	會 081.2535004		email: marco.salv	vemini@unina.it	
SSD BIO/18 CI	FU 6		Year	Term I	
Prerequisites: <u>none</u>					
XPECTED LEARNING RESULTS/RISUL	TATI DI APPRENDIMEN	ITO ATTESI			
Knowledge and understanding skills	/Conoscenza e capacit	à di comprensio	one		
The student has to demonstrate knowle genetic engineering of prokaryotic and e	dge of the methods of re eukaryotic organisms.	ecombinant DNA	technology, both bas	ic and advanced,	and of
Applied knowledge and understandir	ng skills/Conoscenza e	capacità di cor	nprensione applicat	e	
The student must demonstrate the capa species for biotechnological purposes.	acity to design modified o	or transgenic stra	ins aimed at the optir	nization of animal	and plant
Any further learning outcomes expect	cted in relation to/Even	tuali ulteriori ris	sultati di apprendime	ento attesi, relati	vamente a
Autonomy of judgment/A and which type of strain (n	utonomia di giudizio: nodified or transgenic) to	The student has produce on the	to be able to evaluate basis of specific object	te which methodo ctives proposed.	ology to use
Communication skills/Ab professional figures (such a	ilità comunicative: The	student must be vsicists, biologists	able to interact simulta bioinformaticians, ph	aneously with diffe armaceutical chen	rent nists) to
optimize the applicative asp	pects related to the design	n of the modified of	or transgenic strains. F	le/she must be ab	le to write
down and present a report	on selected genetic eng	ineering case stu	idies.		
Learning skills/Capacità e material (scientific paper must be able to independ modified or transgenic st	di apprendimento: The s, on-line courses, tuto dently find detailed info rains to be produced b	e student must b rials) related to rmation on gene v genome editin	e able to expand his genetic engineering etic pathways useful a.	/her knowledge l applications. Th for the productio	by reading e student on of

COURSE MAIN CONTENTS/PROGRAMMA

- Recombinant DNA molecules: design and production.
- Optimization of the expression of recombinant DNA molecules.
- Molecular cloning of genes: molecular hybridization, genomic and cDNA libraries, screening of a library.
- DNA sequencing from Sanger sequencing to high-throughput techniques.
- Basic principles for genomic and transcriptomic assembly and in silico analysis.
- In silico differential expression analysis to identify genes of interests.
- Gene transfer techniques in animal and vegetal species: methods and basic principles.
- Genetic transformation markers.
- The analysis of gene function using RNAi.
- The genome editing through the use of site-specific nucleases (ZNFs, TALENs, CRISPR-Cas9).
- CRISPR-Cas9 in silico target identification.
- · Homologous recombination and the use of site-specific recombination systems.

COURSE MATERIAL

- An introduction to genetic engineering (2008) D.S.T. Nicholl Cambridge University Press
- Genome editing and engineering (2018) K. Appasani Cambridge University Press
- Lecture notes provided during the course.

TARGET AND MODALITY AIMED TO ASSESS THE LEARNING RESULTS

a) Learning results to be verified/Risultati di apprendimento che si intende verificare:

The student should be able to demonstrate the full knowledge of the topics covered by the course program and to be able to simulate an algal genome / transcriptome assembly, a differential expression analysis and a CRISPR-Cas9 target sites in silico search, using data from public databases.

Examination includes	Written test and oral		Written test	x	Oral	x
Project report discussion						
Exam on laboratory of bioinformatics				x		
Written test - questions ask for (*)	Multiple answers	x	Free answers	x	Numerical exercises	х
	-		L		L	

OVERVIEW OF THE COURSE: MICROALGAL RESOURCE Module of: Microalgal exploitation

Teacher: Prof. Daria Maria Monti ² 081.679150 email: dariamaria.monti@unina.it SSD BIO/10 CFU 6 Year 1 Term 1 Prerequisites: none	Study programme name Molecular and Industrial Biotechnology	Course	x	Master degree	A.A.	2021/22
SSD BIO/10 CFU 6 Year I Term Prerequisites: none	Teacher: Prof. Daria Maria Monti	2 081.679150		email: dariamaria.r	nonti@unina	a.it
	SSD BIO/10 CF	U 6		Year	Term	1
	Prerequisites: <u>none</u>					
	Prerequisites: <u>none</u>		ATTERI			
	Knowledge and understanding skills/	Conoscenza e capacita d	comprensio	ne		
Knowledge and understanding skills/Conoscenza e capacita di comprensione	The student must demonstrate to know t	he fundamental bases of a	nal cultivation	and the production of	f hiomass wit	h hiochem

The student must demonstrate to know the fundamental bases of algal cultivation and the production of biomass with biochemical characteristics of interest. The student must know the global environmental issues (climate change, depletion of energy and non-energy resources) that require an innovative biotechnological approach.

Applied knowledge and understanding skills/Conoscenza e capacità di comprensione applicate

The student must acquire the ability to select the microalga of interest and cultivate it on a small or large scale; the student must be able to propose innovative approaches in the context of the exploitation of algal biomass to obtain high added value molecules. Any further learning outcomes expected in relation to/Eventuali ulteriori risultati di apprendimento attesi, relativamente a

- Autonomy of judgment/Autonomia di giudizio: the student must be able to assess which microalga has to be used, on the basis of commercial requests. He/She will have to select the appropriate growth conditions to maximize the production of the molecules of interest.
- **Communication skills/Abilità comunicative:** The student must be able to express himself with correct terminology in the context of industrial bioremediation processes
- Learning skills/Capacità di apprendimento: The student must be able to independently find information for the development of cultivation of algal biomass to obtain the products of interest.

COURSE MAIN CONTENTS/PROGRAMMA

- Structure and metabolism of the algal cell. Pigments and reserve substances. Cultivation: batch crops, semi-continuous
 and continuous crops; culture media in autotrophy, mixotrophy and heterotrophy. Physiological responses to changes in
 CO₂, temperature and pH.
 - Classification of the main algal groups. Algae from extreme environments.
 - Criteria for the selection of algal strains and techniques for the extraction of molecules with high added value.
 - Microalgae: from cells to photobioreactors. The concept of biorefinery: cascade extraction for the production of molecules of biotechnological interest. Potential uses of plant biomass: production of biofuels, CO₂ sequestration from exhaust gas, treatment of waste waters, production, purification and characterization of high added value molecules, to be used in nanotechnology, human and animal nutrition.
- From the laboratory to industrial plants: open tanks, photobioreactors.

COURSE MATERIAL

- Richmond, Handbook of microalgal culture, 2013, Wiley.
- Andersen, Algal culturing techniques, 2005, Elsevier.
- Biologia cellulare & Biotecnologie Vegetali, Pasqua, 2011, Piccin.
- Lecture notes provided during the course.

h) A a a a a mant math a d/M a dalità di a a ma

TARGET AND MODALITY AIMED TO ASSESS THE LEARNING RESULTS

a) Learning results to be verified/Risultati di apprendimento che si intende verificare:

The student must be able to hypothesize an experimental scheme for the extraction of high added value molecules.

Examination includes	Written test and oral	Written test	Oral	x
Project report discussion				
Other procedures (specify)				
Written test - questions ask for (*)	Multiple answers	Free answers	Numerical exercises	

OVERVIEW OF THE COURSE: TRANSPORT PHENOMENA For BIOTECHNOLOGICAL APPLICATIONS

Module of the main course: no main course

Study programme name Molecular and Industrial Biotechnology	X Course	X Master degree	A.A. 2021/22
Teacher: Ing. Giuseppe Toscano	會 081.7682278	email: giuseppe	.toscano@unina.it
SSD ING-IND/24 CFU	9	Year	Term
Prerequisites: none			
EXPECTED LEARNING RESULTS/RISULTA	TI DI APPRENDIMENTO ATTI	ESI	
Knowledge and understanding skills/Co	noscenza e capacità di comp	rensione	
The student must demonstrate to know and	l understand mass, heat, and m	omentum transport pheno	omena occurring in industrial
biotechnological processes.			
Applied knowledge and understanding s	kills/Conoscenza e capacità (di comprensione applica	ate
The student must demonstrate to be able to mass, heat, and momentum transport phen	o solve problems relevant for the omena play a significant role.	e design of industrial biote	echnological processes where
Any further learning outcomes expected	l in relation to/Eventuali ulteri	ori risultati di apprendin	nento attesi, relativamente a
 Autonomy of judgment/Auto and momentum balances and biotechnological processes 	nomia di giudizio: The studen I to adopt the appropriate simpl	t must demonstrate to be ifying assumptions in orde	able to correctly write mass, heat er to effectively analyse industrial
Communication skills/Abilità heat and momentum balance	equations required for the design	ust be able to write down a <u>n of industrial biote</u> chnolo	and present a report on the mass, ogical processes.
 Learning skills/Capacità di a material (books, on-line cour 	pprendimento: The student m rses) related to mass, heat and	nust be able to expand h I momentum balances	is/her knowledge by reading
COURSE MAIN CONTENTS/PROGRAMM	IA		

Diffusion in dilute solutions. Fick's Law. Differential mass balances. Differential equations with separation of variables. Diffusion in geometries with variable section. Diffusion through porous and non-porous membranes. Phase equilibrium at the interface. Partition coefficient. Experimental determination of diffusion coefficients: diaphragm cell. Unsteady mass balances. The pseudosteady-state assumption. Concentration-dependent diffusion coefficient. Diffusion processes in series and in parallel.

- Diffusion with chemical reaction. Porous catalyst and immobilised enzymes. Effectiveness factor and Thiele modulus. Various kinetics and geometries. Reactors with immobilised enzymes.
- Convective mass transfer. Transport equation and transport coefficient. Nondimensional correlations for transport coefficients. Experimental determination of transport coefficients. Oxygen-balance method and dynamic method. Mass transfer in an aeration column. Various examples.
- Diffusion in biological systems. Facilited diffusion. Fast reactions. Diffusion limited problems in biotechnologies. Diffusion of electrolytes. Nernst-Planck equation. Diffusion potential. Mass transfer with electrical fields.
- Momentum transfer. Bioprocess fluid mechanics. Flow of biological fluids. Bioengineering problems with simultaneous transfer of heat, mass, and momentum. Applications to surfactants and bioplastic production processes. Processing and stabilization of multiphase fluids. Processing of drug delivery systems. Bioactive scaffolds for industrial applications. Nano-functionalization. Synthesis of nanoparticles for biotechnological applications.
- Temperature control in bioreactors. Heat transfer. Heat conduction and Fourier's law. Forced and natural convective transfer. Transfer coefficients. Transport in series. Applications to bioreactors.

COURSE MATERIAL

- E.L. Cussler, "Diffusion. Mass transfer in fluid systems", Cambridge University Press (2009).
- P. M. Doran, "Bioprocess Engineering Principles", Academic Press (2012).
- G.A. Truskey, F. Yuan, D.E. Katz, "Transport phenomena in biological systems", Prentice Hall (2009).
- Lecture notes provided during the course.

TARGET AND MODALITY AIMED TO ASSESS THE LEARNING RESULTS

a) Learning results to be verified/Risultati di apprendimento che si intende verificare:

The student must be able (i) to write down mass, heat, and momentum balance equations relevant in industrial biotechnological processes, (ii) to identify controlling transport mechanisms, (iii) to introduce simplifying assumptions wherever appropriate.

Examination includes	Written test and oral	Written test	x	Oral	
Project report discussion					
Other procedures (specify)					
Written test - questions ask for (*)	Multiple answers	Free answers	x	Numerical exercises	x

OVERVIEW OF THE COURSE: POLYESTER BASED BIOPLASTICS Module of: Biopolymers and Bioplastics

Study programme name Molecular and Industrial Biotechnology	Course	x	Master degree	A.A .	2021/22
Teacher: Prof.ssa Cinzia Pezzella	☎ 081.674475		email: cinzia.pezze	ella@unina.it	
SSD CHIM/11 C	FU 6		Year	Term	II
² rerequisites: <u>none</u>					
PECTED LEARNING RESULTS/RISUL	TATI DI APPRENDIMENT	O ATTESI			
natural polymers and bioplastics form re biotechnological strategies aimed at pro Applied knowledge and understandin The student has to be able to design pr biotechnological and green strategies.	enewable sources. He/She oducing biopolymers in sus ng skills/Conoscenza e c ocesses for the production He/She has to be able to a	has to demon stainable mann a apacità di cor and functiona pply the acquir	Instrate to be able to dist er. mprensione applicate lization of biopolymers red methodologies to th	scuss about the s, through the he designing	application c
for specific industrial applications. Any further learning outcomes exped	cted in relation to/Eventu	ali ulteriori ris	sultati di apprendime	nto attesi, re	ativamente
 Autonomy of judgment/A related to the sustainable to parameters (cost and envir 	utonomia di giudizio: Th piopolymer production and p onmental impact, yield and	ne student will b to elaborate ne product recove	e able to autonomously w solutions for the opti ry, etc) and for the tail	y evaluate the imization of th loring of polyn	e different issu ne main proce ner properties
Communication skills/Ab communication skills requir useful for the optimization of	ilità comunicative: The si red to interact with different of the production and applica	tudent will prov professional pr ation of the bio	e to have acquired the sofiles (process enginee polymer of interest.	scientific/tech r, material enç	nical gineer) and
Learning skills/Capacità drawing on books, high-lev bioplastics. The course will course contents, by fosterin Biotechnological companie	di apprendimento: The st el scientific papers in Englis provide guidance and sugg ng his/her participation to int s	tudent has to be sh language, fo gestions in orde terdisciplinary e	e able to update and bro cused on the production of to allow the student to events organized with re	oaden his/her n and applicat tackle topics epresentatives	background, ion of related to the of

COURSE MAIN CONTENTS/PROGRAMMA

- Introduction to polymeric materials: physical, thermal and mechanical properties
- Bioplastics from renewable feedstocks: production processes, market and sustainability of bioplastics;
- · Polyester based bioplastics: examples and applications;
- · Microbial biopolymers: natural and synthetic routes for biopolymer production from bacteria
- Biopolymer biodegradation: definitions and biodegradation tests;
- · Biomaterial processing and functionalization: nanoparticles and nanofibers
- Biopolymers applications to different sectors: packaging, healthcare, textile, etc.
- · Laboratory activities: Synthesis and characterization of microbial polyhydroxyalkanoates based films

COURSE MATERIAL

. . .

- Handbook of Biopolymers and Biodegradable Plastics- 1st Edition. Properties, Processing and Applications. Editors: Sina Ebnesajjad eBook ISBN: 9781455730032; Hardcover ISBN: 9781455728343
- Course slides, scientific papers and learning material provided by the lecturer

TARGET AND MODALITY AIMED TO ASSESS THE LEARNING RESULTS

a) Learning results to be verified/Risultati di apprendimento che si intende verificare:

The student has to be able to elaborate and design solutions and processes for the production and application of biopolymers in different fields (packaging, biomedical, agriculture, pharmaceutical, textile, etc..).

b) Assessment method/Modalita di esa	ime:			
Examination includes	Written test and oral	Written test	Oral	Х
Project report discussion				
Other procedures (specify)				
Written test - questions ask for (*)	Multiple answers	Free answers	Numerical exerci	ses

OVERVIEW OF THE COURSE: POLYSACCHARIDE- AND PROTEIN- BASED BIOPLASTICS Module of: Biopolymers and Bioplastics

Study programme name Molecular and Industrial Biotechnology	Course	X Master degree	A.A. 2021/22
Teacher: Dr. Giosafatto Concetta Vale	eria Lucia 🖀 081.253947(email: giosafat@unin	a.it
SSD BIO/10	CFU 6	Year	Term
Prerequisites: <u>none</u>			
EXPECTED LEARNING RESULTS/RISUL	TATI DI APPRENDIMENTO	O ATTESI	
Knowledge and understanding skills/	Conoscenza e capacità di	comprensione	
At the end of the course the student will from polysaccharides and proteins; 2) ch improve the properties of bioplastics by r	be able to 1) know the main naracterize the bioplastics for means of enzymes, differen	n methods for the production of hydroco or their potential industrial application; 3 t plasticizers and/or nanoparticles of d	olloid bioplastics derived 3) know the methods to ifferent nature.
Applied knowledge and understandin	g skills/Conoscenza e car	pacità di comprensione applicate	
The course will allow students to 1) face 2) identify the main biotechnological pro- the bioplastic main properties (mechanic	the problems concerning th cesses for the production of cal, biological and barrier) in	ne pollution caused by the over-produc environmentally friendly packaging; 2 order to identify their industrial applica	tion of traditional plastics;) to hypothesize changes in ation.
Any further learning outcomes expect	ted in relation to/Eventual	i ulteriori risultati di apprendimento	attesi, relativamente a
Autonomy of judgment/Au production of bioplastics a mechanical and barrier prop impact of different bioplastic	tonomia di giudizio: The and to indicate the main r perties, possessing specific at a production level.	student should be able to know the ir methodologies relevant for obtaining biological activities. The student shoul	nnovative processes for the bioplastics with improved ld also be able to define the
Communication skills/Abili (such as process engineers, Furthermore, he/she will hav the results achieved by using	ità comunicative: The stud , industrial chemists) to optir /e to know how to present a g a proper technical languag	lent should be able to interact with diffe nize the application aspects related to l scientific paper and summarize in a co ge.	erent professional figures bioplastic design. omplete and concise way
Learning skills/Capacità di draw further information of publications, and be able t the industrial world.	apprendimento: At the en n the methods of production to follow workshops, confe	nd of the course the student should l on and characterization of bioplastics erence reports and to attend interview	be able to autonomously s from different scientific ws with main exponents of

COURSE MAIN CONTENTS/PROGRAMMA

- Pollution caused by the over-production of traditional plastics and possible biotechnological tools to counteract such phenomenon.
- Biodegradable plastics as eco-sustainable alternatives to plastics of petrochemical origin.
- Production and characterization of the main hydrocolloid bioplastics.
- Use of different methods (casting, dipping, spraying) for the preparation of polysaccharide- and protein-based bioplastics.
- Zeta potential analysis to study the stability of the film forming solutions. Experimental determination of the properties of hydrocolloid biomaterials: mechanical (tensile strength, elongation at break, Young's modulus) and barrier features towards gases (CO₂ and O₂) and against water vapour).
- Improvements of bioplastic properties through the use of enzymes, different plasticizers, various nanoparticles or by "blending" with other polymers.
- Recent industrial applications of hydrocolloid bioplastics.
- Case study: production by casting method of a kind of protein-based bioplastics prepared in the presence of the enzyme transglutaminase.

COURSE MATERIAL

- Book "Bioplastics, basics, applications, markets, Michael Thielen, Polymedia Publ.
- Material distributed by the lecturer.
- Scientific papers regarding the specific topics of the course.
- Course slides.

TARGET AND MODALITY AIMED TO ASSESS THE LEARNING RESULTS

a) Learning results to be verified/Risultati di apprendimento che si intende verificare:

The student should be able to: a) use polysaccharides, proteins (either or not enzymatically modified) and additives of different nature for the production of different bioplastics; b) to determine the main chemical-physical, morphological and biological properties of hydrocolloid bioplastics.

Examination includes	Written test and oral	Written test	Oral	Х
Project report discussion				
Other procedures (specify)				
Written test - questions ask for (*)	Multiple answers	Free answers	Numerical exercis	es x

OVERVIEW OF THE COURSE: BIOREFINERY PROCESSES

Module of the main course: no main course

Study programme name Molecular and Industrial Biotechnology	X Course	X Master degree	A.A.	2021/22
Teacher: Ing. Francesca Raganati	2 081.7682218	email: francesca.ra	aganati@unin	a.it
SSD ING-IND/25 CFU	6	Year	Term	
Prerequisites: none				
XPECTED LEARNING RESULTS/RISULT	ATI DI APPRENDIMENTO AT	TESI		
The student must demonstrate to know an processing industrial material and efficient uti	d to understand the problems lization of renewable products	related to the selection and the	e design of uni	ts dedicated to
	skills/Conoscenza e capacit	à di communatore cumbicata		
Applied knowledge and understanding		a di comprensione applicate		
The student must demonstrate to be able to combining: 1) operation units dedicated to units. The design should include assessme	to apply concepts for designing the exploitation of renewable ents regarding the sustainabili	g bioprocess flowsheets for the resources; 2) fermentation unit ty of the process.	e production of s; 3) recovery	products by and purification
The student must demonstrate to be able to combining: 1) operation units dedicated to units. The design should include assessme Any further learning outcomes expected	to apply concepts for designing the exploitation of renewable ents regarding the sustainabili d in relation to/Eventuali ulto	g bioprocess flowsheets for the resources; 2) fermentation unit ty of the process.	e production of s; 3) recovery nto attesi, rela	products by and purification ativamente a

- **Communication skills/Abilità comunicative:** The student must be able to develop a flowsheet and to discuss the main features of the flowsheet. The student must be able to present the proposed selection of operation units pointing out the role of the selected unit/operating conditions with respect the (bio)features of products.
- Learning skills/Capacità di apprendimento: The student must be able to expand his/her knowledge by looking up
 documents (scientific papers, on-line courses, tutorials) related to the selection of units for the exploitation of renewable
 resources and the selection of the optimal operating conditions.

COURSE MAIN CONTENTS/PROGRAMMA

Biorefinery concept - current scenario, definition, examples. Overview of the main biorefinery concepts and platforms. <u>Recovery, yield, selectivity, pureness</u> – concepts for operation units dedicated to biotechnological processes. <u>Downstream processes in biotechnological industries</u> - Removal of insolubles (filtration and centrifugation), isolation of product, purification and polishing. <u>Liquid-liquid extraction</u>: Consolidate processes and innovative liquids. Mass balances, thermodynamic equilibrium and role of the extracting liquid for the features of the products. Extraction strategies (single/multiple stage, cross/counter current). Design of selected units. <u>Membrane filtration</u> - Mass balances, mechanical and transport phenomena. Criteria for the selection of the filtration unit. Filtration strategy.

Adsorption - Mass balances, thermodynamic equilibrium and role of the adsorbent material for the features of the products. Adsorption strategies (batch, continuous, ...). Design of selected units. <u>Chromatography</u> - Mass balances and thermodynamic. Strategies and techniques. Industrial design: Simulated Moving Bed.

Precipitation/Crystallization - Mass balances, kinetics and main principles. Strategies and techniques. Industrial design.

<u>Flowsheet development</u> – Sequence of operation units to exploit renewable resources. Objective function of the flowsheet. <u>Techno-economic analysis in biorefinery processes</u> - CAPEX and OPEX, Lang factor method, OPEX analysis in labour, utilities, materials, waste and consumables.

Case studies - Energy from Biomass and Waste, Bioproducts from biomass and waste and examples of biorefinery concepts.

COURSE MATERIAL

- Coulson & Richardson's Chemical Engineering: Chemical Engineering Design, Butterworth-Heinemann 1999.
- McCabe&Smith Unit Operations of Chemical Engineering, John Wiley and Sons 1999.
- Belter, Cussler & Wei-Shou Hu Bioseparations: Downstream Processing for Biotechnology, Wiley-Interscience 1988.
- Harrison, Separation Process Design, Wiley, 2003.
- Lecture notes provided during the course.

TARGET AND MODALITY AIMED TO ASSESS THE LEARNING RESULTS

a) Learning results to be verified/Risultati di apprendimento che si intende verificare:

The student must be able to select unit operations to exploit renewable resources and to design selected units.

b) Assessment method/Modalità di esame:

Examination includes	Written test and oral	Written test	x	Oral
Project report discussion				
Other procedures (specify)				

Written test - questions ask for (*) Multiple answers

Free answers

Numerical exercises x

OVERVIEW OF THE COURSE: BIOREACTORS Module of: Design of Conversion Processes

Study programme name Molecular and Industrial Biotechnology	Course	X Master deg	ree A.A.	2021/22
Teacher: Prof. Piero Salatino	☎ 081.7682258	email: sala	tino@unina.it	
SSD ING-IND/25 C	FU 6	Year II	Term]
Prerequisites: none				
EXPECTED LEARNING RESULTS/RISU	LTATI DI APPRENDIME	NTO ATTESI		
Knowledge and understanding skills	/Conoscenza e capacità	à di comprensione		
The student must demonstrate to know	and to understand the se	election and the design of biore	eactors to exploit the re-	sources taking
into account the features of the propose	ed reactive biosystem (en	zymes and/or microorganisms	s), of the feedstock and	of the
bioreactors.				
Applied knowledge and understandi	ng skills/Conoscenza e	capacità di comprensione a	pplicate	
The student must demonstrate to be ab	le to design/optimize the	performance of the bioreactor	s taking into account th	e features of
the feedstock, of the proposed reactive	biosystem (enzymes and	d/or microorganisms) and of the	e bioreactors. He/she m	nust
demonstrate to carry out the design/opt	imization by also using n	umerical simulations.		
Any further learning outcomes expect	cted in relation to/Event	tuali ulteriori risultati di appr	endimento attesi, rela	ativamente a
Autonomy of judgment/A antimel bigroaster configu	Autonomia di giudizio:	The student must demonstra	ale lo de adle lo corre	be must be also
able to judge the obtained	results obtained from su	stainable point of view		
Communication skills/Ab	ilità comunicative: The	student must be able to write of	down and present a rep	ort on the
optimal bioreactor configu	ration and the criteria sele	ected to design/optimize the bio	oreactor taking into acc	ount the
features of the proposed r	eactive biosystem (enzyn	nes and/or microorganisms), o	of the feedstock, and of	the bioreactors.
Learning skills/Capacità	di apprendimento: The	student must be able to expand	d his/her knowledge by	looking up
documents (scientific pape	ers, on-line courses, tutori	ials) related to the selection of l	pioreactors for the explo	oitation of
feedstocks and the selection	on of the optimal operatin	a conditions		

COURSE MAIN CONTENTS/PROGRAMMA

Continuous and discontinuous ideal reactors. Reactor systems based on the combination of ideal reactors. Optimization of reaction systems for different kinetics. Applications to systems for industrial application and development of case studies. Reagent systems in the presence of reaction networks. Definition of yield and global selectivity and use. Analysis of simple reaction networks.

Optimization of process conditions (mixed / segregated flow, composition of reagent stream) in relation to yield and selectivity Exploring the main functional aspects of chemical reactors. Issues associated to mixing/segregation of homogeneous phases. Mass transfer phenomena in bioreactors: main issues of coupling mass transport rate and chemical kinetics. Review of the types of reactors (enzymatic and fermentative) used in industrial bioprocesses. Case study: e.g. production of biofuels, production of green chemicals, bioremediation.

COURSE MATERIAL

• Villadsen J, Nielsen J, and Lidén G. (2011) BIOREACTION ENGINEERING PRINCIPLES. Springer To look up:

• Levenspiel, O., Chemical Reaction Engineering, 3rd Ed., Jhon Wiley & Sons, 1999

• Lecture notes provided during the course.

TARGET AND MODALITY AIMED TO ASSESS THE LEARNING RESULTS

a) Learning results to be verified/Risultati di apprendimento che si intende verificare:

The student must be able to carry out to identify the optimal bioreactor configuration and the simplifying assumptions to design/optimize a bioreactor.

Examination includes	Written test and oral	Written test	x	Oral	
Project report discussion					
Other procedures (specify)					
Written test - questions ask for (*)	Multiple answers	Free answers		Numerical exercises	x

OVERVIEW OF THE COURSE: PROCESS SIMULATION Module of: DESIGN OF CONVERSION PROCESSES

Study program Molecular and Ir	n me name ndustrial Biotechnology	Course	X Master de	egree	A.A. 2021/22
Teacher: Ing. T	ammaro Daniele	☎ 081	email: d	aniele.tammaro@	Dunina.it
SSD ING-IN	D/26 CFU	6	Year	ī	Term I
Prerequisites: <u>n</u>	one				
XPECTED LEARN	ING RESULTS/RISULTAT	I DI APPRENDIMENTO AT	TESI		
Knowledge and	understanding skills/Cor	noscenza e capacità di co	mprensione		
The student mus	st demonstrate to know and	understand the problems r	elated to the formula	tion and numerica	l solution of
mathematical me	odels of interest of industria	I biotechnology and to the a	analysis of experimer	ntal data through s	statistical technique
Applied knowle	edge and understanding s	kills/Conoscenza e capac	ità di comprension	e applicate	•
The student mus	st demonstrate to be able to	use a software to solve co	mplex equations mod	delling the dynami	cs of systems of
interest of indust	trial biotechnology. He/she r	must also be able to carry o	out statistical analysis	and parameter es	stimation from
experimental da	ta.	-	-	•	
Any further lea	rning outcomes expected	in relation to/Eventuali u	Iteriori risultati di ap	oprendimento att	tesi, relativamente
• Au ma to Fui reg	tonomy of judgment/Autor thematical model and the si solve it. He/she must be a rthermore, he/she must der gression technique.	nomia di giudizio: The si implifying assumptions of a also able to correctly und monstrate to be able to ev	udent must demonsi specific problem, as erstand the results aluate the reliability	trate to be able to well as the correc obtained from a of the parameters	o correctly identify t numerical technio numerical simulat evaluated throug
Co nur bio	mmunication skills/Abilità merical simulation and parar technology.	comunicative: The studer meter estimation of a mathe	nt must be able to wri matical model of a pr	te down and prese rocess of interest c	ent a report on the of industrial
• Lea ma	arning skills/Capacità di ap aterial (scientific papers, or	pprendimento: The stude n-line courses, tutorials) r	nt must be able to e elated to the use of	expand his/her known Matlab, to the nu	owledge by readi umerical solution

COURSE MAIN CONTENTS/PROGRAMMA

equations and regression techniques.

- An introduction to Matlab: variables, vectors and matrices, M-files, functions, graphics.
- Simulation of processes of interest of industrial biotechnology: typology of mathematical models (steady/unsteady, linear/nonlinear, ordinary/partial differential equations, etc.), introduction to the numerical techniques.
- Numerical solution of linear and non-linear systems of equations: back-substitution, method of Gaussian elimination, pivoting, Newton's method, stopping criteria, problems with Newton's method.
- Numerical solution of ordinary differential equations: temporal discretization, explicit and implicit Euler's method, method of Crank-Nicolson, methods of Runge-Kutta, multi-step methods, predictor-corrector methods, Gear's methods.
- Application of the numerical techniques for simulating complex systems such as: bioreactors in series or parallel, adsorption, ultrafiltration, etc.
- Descriptive statistics: mean, median, mode, standard deviation, variance, guartiles, percentiles, box-plot, skewness, kurtosis.
- Random variables: the model of the experiment and the process, kinds of random variables, distributions, mean of a random variable.
- Linear and multilinear regressions: estimation and estimator, properties of estimators, least-square method, evaluation of linear and multilinear regression coefficients, evaluation of error variance.
- Adequacy of the regression: residual analysis, coefficient of determination, correlation matrix.
- Non-linear regression: minimization algorithms, model linearization, weighted least-square method, simultaneous regression of multiple models.

COURSE MATERIAL

- Montgomery and Runger, Applied Statistics and Probability for Engineers, John Wiley & Sons, 2003. ٠
- Quarteroni, Sacco and Saleri, Numerical Mathematics, Springer, 2007.
- Lecture notes provided during the course.

TARGET AND MODALITY AIMED TO ASSESS THE LEARNING RESULTS

a) Learning results to be verified/Risultati di apprendimento che si intende verificare:

The student must be able to carry out statistical data analysis and to solve the equations governing the dynamics of systems of interest of industrial biotechnology by using numerical software.

b) Assessment method/Modalità di esame:

Written test - questions ask for (*)

Examination includes	Written test and oral	Written test	x	Oral	
Project report discussion					
Other procedures (specify)					
		F		Numeral	T

Numerical exercises

OVERVIEW OF THE COURSE: ENVIRONMENTAL ECONOMICS

Module of: no main course

Study programme name Molecular and Industrial Biotech	nology X Course	X Master degree	A.A. 2021/22
Teacher: Prof. Marcello D'Ama	ito 🖀 320 422 6743	email: marcello	o.damato@unisob.na.it
SSD SECS-P/02	CFU 6	Year	Term
Prerequisites: none			
EXPECTED LEARNING RESULTS/	RISULTATI DI APPRENDIMENTO	D ATTESI	
Knowledge and understanding	skills/Conoscenza e capacità d	li comprensione	
The student has to demonstrate renewable. The student will be a biotechnological processing. Kny evaluation (cost benefit analysis)	to know the economics principles to ble to apply these notions in relati voledge of cost benefit analysis wi of private investment and policy in	for the allocation and manageme ion to the main possible field of e ill also allow student to understant nternvention	ent of renewable and non economic applications of nd principles of economic
Applied knowledge and under	standing skills/Conoscenza e ca	apacità di comprensione appli	cate
The student has to demonstrate	the capacity to understand principl	les of economic analysis applied	to the case of environmental
issues and policies and to renew	able and non renewable resources	s. The course will allow the stud	ent to understand the
contribution of biotechnologies to	o issues such as the energy transit	tion or mitigation or adaptation p	olicies towards climate change
and to meet environmental stand	Jards.		
Any further learning outcomes	expected in relation to/Eventua	ali ulteriori risultati di apprend	imento attesi, relativamente a
Autonomy of judgr public policy instrur	nent/Autonomia di giudizio: The nents on natural resource exploita	student should be able to evalua tion.	Ite the effect of the most common
Communication sk (bureaucrats, emplo operating in related	xills/Abilità comunicative: The co yers, unions, third sectors, ecologis sectors	ourse will help students to interact ts) operating in the area of enviro	with different professional figures nmental policies or firms
Learning skills/Cap competently frame the role of firms and basic skills in cost b	pacità di apprendimento: The stu economically meaningful policy an d markets in renewable and non re penefit analysis in the presence of	udent should be able to develop nd empirical questions addressin enewable resources. The studen environmental externalities.	an independent attitude to g environmental policies and t should also be able to develop

COURSE MAIN CONTENTS/PROGRAMMA

- 1. Review of the Economic Approach to the environment and natural resources. Market Allocation, Property rights, Externalities
- 2. Economic Foundations of Cost Benefit Analysis
- 3. Economic Models of the energy transition
- 4. Dynamic Efficiency and Sustainable Development
- 5. Non Renewable and Renewable Resources

COURSE MATERIAL

- Environmental and Natural Resource Economics, Tietenberg and Lewis, Routledge Edition
- Slides and or Lecture notes provided during the course.

TARGET AND MODALITY AIMED TO ASSESS THE LEARNING RESULTS

a) Learning results to be verified/Risultati di apprendimento che si intende verificare:

The student should be able to demonstrate the full knowledge of the topics covered by the course program and to be able to assess cost benefits analysis. As well as to recognize the ideal setting for environmental policy evaluation.

b) Assessment method/Modalità di esa Examination includes	me: Written test and oral	Written test	x	Oral	
Project report discussion					
Other procedures (specify)					
		_			
Written test - questions ask for (*)	Multiple answers	Free answers		Numerical exercises	x